ОМИКРОН ОМИКРОН ОМИКРОН
Система Orphus

Реле времени РВ03

Реле времени РВ03

1. Технические характеристики статического реле времени РВ03

2. Принцип действия и устройство статического реле времени РВ03

3. Техническое обслуживание статического реле времени РВ03

 

1. Технические характеристики статического реле времени РВ03

Реле времени предназначено для получения выдержек времени на возврат после отключения напряжения для устройств релейной защиты и автоматики на переменном оперативном токе. Реле имеет на выходе один переключающий контакт без нормируемой выдержки времени и по одному размыкающему контакту на выходах каждой из двух цепей с независимо регулируемой выдержкой времени на замыкание после отключения напряжения.
Номинальное напряжение переменного тока 100; 127; 220; 380 В частоты 50 или 60 Гц. Реле выполняются на следующие диапазоны выдержек времени: 0,15—3,0с, 0,5— 10с и 1,0— 20,0 с. Разброс выдержек времени не превышает следующих значений: для первого диапазона 10%, для второго и третьего диапазонов — 7,5% и 5% соответственно. Регулирование выдержки времени выполняется с помощью переключателей уставок 5В 1 — 5В6. Время выдержки (с) определяется по формуле

Туст = Тмин + N,

где N — сумма чисел на шкале уставок, около которых шлицы переключателей SВ1-SВ6 установлены в горизонтальное положение; Тмин - минимальная уставка — 0,15 с для диапазона 0,15—3,0 с, 0,5 с для диапазона 0,5— 10 с, 1,0 с для диапазона 1,0—20 с.

Время размыкания размыкающих контактов реле при подаче номинального напряжения не превышает 0,025 с. Время замыкания замыкающего контакта при подаче номинального напряжения не превышает 0,03 с. Время размыкания замыкающего контакта при отключении номинального напряжения — не более 0,05 с. Время повторной готовности реле к возврату с заданной выдержкой времени — 0,1 с.
Коммутационная способность контактов реле в цепи постоянного тока до 30 Вт с индуктивной нагрузкой при постоянной времени не более 0,02 с или 50 Вт с индуктивной нагрузкой при постоянной времени 0,05 с и до 250 В-А в цепи переменного тока при коэффициенте мощности не ниже 0,4. Потребляемая мощность при номинальном напряжении — 3 В-А. Размер цоколя реле — 152х81 мм, высота — 181 мм, масса реле — 1,2 кг.

 

2. Принцип действия и устройство статического реле времени РВ03

Принципиальная схема реле приведена на рис. 7. Схема содержит два идентичных времязадающих контура, снабженных выходными реле с магнитной памятью, а также элементами регулировки уставок, общий блок питания и реле без нормируемой выдержки времени.
Каждая из схем выдержки времени состоит из времязадающего контура С1(С5); R1-R7 (R21-R27), конденсатора памяти С2 (С6), делителя опорного напряжения в цепи заряда конденсатора памяти R13-Rl5 (R33-R35), разделительных диодов VD1, VD2, (VD5, VD6), пороговой схемы на транзисторах VT1, VT2 (VT4, VT5) противоположных типов проводимости и выходного каскада на транзисторе VT3 (VT6), накопительного конденсатора С4 (С8) и реле с магнитной памятью К1 (К2). На схемы выдержки времени подается выпрямленное, но несглаженное напряжение и срабатывает реле К1 (К2) по цепи резистора RIQ (.R38) и размыкающего контакта К1 (К2). После размыкания этого контакта через обмотку реле продолжает протекать ток заряда накопительного конденсатора С4 (С8) и обеспечивается четкая фиксация реле в положении после срабатывания даже при плавном подъеме напряжения. Одновременно происходит заряд времязадающего конденсатора Cl (C5) до напряжения, ограниченного стабилитроном VD10, и несколько более медленный заряд конденсатора памяти С2 (С6) до напряжения, зависящего от положения движка потенциометра R13 (R34) и параметров резисторов R13-R15 [R33 — R35] делителя напряжения стабилизации. Все транзисторы при этом заперты.
При срабатывании реле К1 и К2 размыкаются их размыкающие контакты К1 и К2 во внешних цепях. В дальнейшем при наличии питания состояние элементов схемы не изменяется, а подводимая из сети энергия расходуется на намагничивание трансформатора, питание катушки реле без нормируемой выдержки времени, питание делителей стабилизированного напряжения и на создание тока стабилизации стабилитрона VD10.
Для того, чтобы напряжение на конденсаторе памяти С2 (С6) с течением времени не возрастало под влиянием тока утечки запертого перехода база-эмиттер транзистора VT1 (VT4), в схему реле введена цепь VD3-R12 (VD7-R32} и VT7.


Принципиальная схема реле времени РВОЗ

Рис.7. Принципиальная схема реле времени РВОЗ


Если мгновенное значение напряжения на выходе моста превышает напряжение стабилизации стабилитрона VD10, то по цепи базы транзистора VT7 протекает ток и он находится в режиме насыщения. При этом открыт диод VD3 (VD7) и через резистор Я12 (R32) протекает ток, превышающий обратный ток перехода эмиттер-база транзистора VT1 (VT4), благодаря чему диод VD2 (VD6) открыт и фиксирует требуемый уровень напряжения на конденсаторе памяти С2 (Сб).
При отключении напряжения или снижении его ниже напряжения возврата реле разделительные диоды VD1, VD2 (VD5, VD6) запираются, транзистор VT7 переходит в режим отсечки и конденсатор Cl (C5) получает возможность разряжаться на резисторы RI-R7 [R21-R27). Напряжение на конденсаторе памяти С2 (С6) не изменяется, поскольку все пути разряда отделены запертыми p-n переходами транзисторов и диодов. По мере разряда конденсатора Cl (C5) запирающее напряжение на переходе база-эмиттер транзистора VT1 (VT4) уменьшается и в некоторый момент времени изменяет знак и становится открывающим. Появляющийся в цепи эмиттера транзистора VT1 (VT4) ток разряда конденсатора С2 (Сб) передается в цепь базы транзистора VT2 (VT5) и усиливается им, благодаря чему появляется ток в цепи резистора R9'[R29}. Это приводит к большему снижению потенциала базы транзистора VT1 (VT4), чем снижение напряжений конденсаторов Cl (C5) и С2 (С6) в начальной стадии открытия транзисторов j VT1, VT2 (VT4, VT5). Ток базы транзистора VT1 (VT4) лавинообразно нарастает, что приводит к насыщению всех транзисторов VT1-VT6 токами разряда конденсаторов Cl, С2 (С5.С6) на резисторы R9, R0 (R29, R30) и сопротивления р-н переходов насыщенных транзисторов.
При насыщении транзистора VT3 (VT6) конденсатор С4 (С8) разряжается на обмотку реле К1 (К2), причем полярность тока разряда противоположна полярности тока в обмотке реле при его срабатывании. Импульс разрядного тока наводит в обмотке реле МДС, компенсирующую МДС постоянного магнита, и под влиянием противодействующей пружины якорь реле К1 (К2) отпадает, а размыкающие контакты реле замыкаются. При этом остаток энергии, накопленной конденсатором С4 (С8), гасится на сопротивлении резистора R18 (Я38), подключаемого параллельно конденсатору, размыкающим контактом К1 (К2), подготавливая схему реле к повторному срабатыванию при последующей подаче напряжения питания.
Насыщенное состояние транзисторов VT1-VT3 (VT4-VT6) сохраняется в течение времени разряда конденсаторов Cl, С2 (C5, С6), причем выбором значений сопротивления резистора R9 (R29] и емкости конденсатора С2 (С6) длительность насыщения транзистора VT3 (VT6) задана заведомо превышающей время, необходимое для возврата реле KL1 и KL2 при любом исполнении реле по диапазону уставок.
Резисторы R16, R17 (R36, R37} ограничивают кратность тока через обмотку реле с магнитной памятью на уровне сохранения поляризованных свойств в диапазоне допустимых колебаний напряжения питания. Совместно с конденсатором СЗ (С7) эти резисторы образуют фильтр для защиты транзистора VT3 (VT6) от перенапряжений, возможных при совпадении момента возврата реле К1 и К2 с моментом повторной подачи напряжения питания и возникающим в связи с этим реверсом тока в обмотке реле. При этом резистор R16 (R36) ограничивает на допустимом уровне амплитуду тока разряда конденсатора СЗ (С7) на транзистор VT3 (VT6). Защита выпрямительного моста V51 и разделительных диодов VD4, VD8, VD11 от перенапряжений, возникающих в сети, обеспечивается за счет междуобмоточных емкостей и сопротивлений рассеяния обмоток трансформатора TV1.
При совпадении момента разряда конденсаторов С1, С2 (С5, С6) с моментом повторной подачи напряжения питания транзисторы реле с минимальным замедлением (практически мгновенно) запираются, а поведение выходных реле Kl, K2 и состояние конденсатора С4 (С8) будет зависеть от того, успело ли реле к этому моменту вернуться и замкнуть свой размыкающий контакт в цепи разряда конденсатора или не успело. В первом случае реле Kl (K2) повторно срабатывает, как было описано выше. Во втором случае конденсатор С4 (С8) опять переключается на заряд. Такое построение схемы реле исключает возможность нахождения реле в неправильном коммутационном положении, не соответствующем режиму наличия напряжения питания.
Работоспособность реле и все нормируемые параметры точности обеспечиваются при полном отключении цепи питания реле времени (например, при контактном управлении) либо при скачкообразном уменьшении напряжении ниже 10% номинального. Возврат реле без нормируемой выдержки (KL3) обеспечивается при снижении напряжения до (10 — 55)% номинального.
Блок питания реле времени содержит трансформатор напряжения TV1 с секционированными обмотками, обладающими повышенным сопротивлением рассеяния, выпрямительный мост VS1, стабилитрон VD10, диод смещения VD9 и балластный резистор R19. Включение перехода база-эмиттер транзистора VT7 последовательно со стабилитроном VD10 обеспечивает компенсацию температурных изменений напряжения на разделительном диоде VD1 (VD6).

 

3. Техническое обслуживание статического реле времени РВ03

Техническое обслужевание статического реле времени РВ03 изложено на следующей странице: 3. Техническое обслуживание промежуточных реле РП16, РП17, РП18 и статических реле времени РВ01, РВ03, РСВ13, РСВ14

 

10 Ноябрь, 2012              11093              ]]>Печать]]>
0 / 0 ( Нет оценки )

Добавить комментарий

Ваше имя

Текст

Контрольный вопрос

Дva plus trи ? (цифрой)


Вверх страницы