ОМИКРОН ОМИКРОН ОМИКРОН
А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
0-9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z

Масляный выключатель

Масляный выключатель

электрический выключатель переменного тока высокого напряжения, главные контакты которого помещаются в объёме, заполненном минеральным (трансформаторным) маслом. При отключении электрической цепи между контактами выключателя возникает дуга электрическая. Под действием высокой температуры дуги масло быстро испаряется и его пары частично разлагаются с выделением водорода, этилена, метана и др. В зоне дуги образуется газовый пузырь, давление в котором может достигать нескольких десятков Мн/м2. Дуга гаснет как вследствие её удлинения при расхождении контактов, так и от интенсивного охлаждения газом и парами масла. Продолжительность горения дуги в М. в. с простым разрывом под маслом составляет 0,02—0,05 сек. Для более эффективного гашения дуги применяют дугогасительные камеры (рис. 1). В камере продольного дутья образующиеся пары и газы устремляются вверх вдоль дуги, охлаждая её. Кроме того, дуга соприкасается с холодным маслом, заполняющим кольцевые щели камеры, что также ускоряет её охлаждение. В камере поперечного дутья вследствие резкого повышения давления в газовом пузыре образуется поток масла и газов поперёк дуги, который ускоряет процесс её охлаждения.

{tags}
2 Ноябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Маслонаполненный кабель

Маслонаполненный кабель

силовой кабель высокого напряжения, у которого бумажная изоляция пропитана минеральным маслом под давлением. Повышение электрической прочности изоляции в М. к. достигается устранением газовых включений (пустот) в изоляции — возможных очагов пробоя — посредством заполнения их маслом; давление масла во время эксплуатации поддерживается с помощью подпитывающих устройств. Применяется для вывода электроэнергии с крупных электрических станций и подземных ГЭС к распределительным устройствам, при переходе линий электропередачи через водные преграды, в районах с интенсивной застройкой, для глубоких вводов в города с большим энергопотреблением и т. д.

{tags}
2 Ноябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Максвелла уравнения

Максвелла уравнения

фундаментальные уравнения классической макроскопической электродинамики, описывающие электромагнитные явления в произвольной среде. М. у. сформулированы Дж. К. Максвеллом в 60-х годах 19 века на основе обобщения эмпирических законов электрических и магнитных явлений. Опираясь на эти законы и развивая плодотворную идею М. Фарадея о том, что взаимодействия между электрически заряженными телами осуществляются посредством электромагнитного поля, Максвелл создал теорию электромагнитных процессов, математически выражаемую М. у. Современная форма М. у. дана немецким физиком Г. Герцем и английским физиком О. Хевисайдом.

{tags}
2 Ноябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Магнитоэлектрический прибор

Магнитоэлектрический прибор

измерительный, прибор непосредственной оценки для измерения силы электрического тока, напряжения или количества электричества в цепях постоянного тока. Подвижная часть измерительного механизма М. п. перемещается вследствие взаимодействия магнитного поля постоянного магнита и проводника с током. Наиболее распространены М. п. с подвижной рамкой, расположенной в поле постоянного магнита (рис.). При протекании по виткам рамки тока возникают силы, образующие вращающий момент (см. Ампера закон). Ток к рамке подводится через пружинки или растяжки, создающие противодействующий вращающий механический момент. Под действием обоих моментов рамка перемещается на угол, пропорциональный силе тока в рамке. Непосредственно через обмотку рамки можно пропускать только небольшие токи силой от нескольких мка до десятков ма, чтобы не перегреть обмотки и растяжки. Для расширения пределов измерений по току и по напряжению к рамке подключают шунтирующие и добавочные сопротивления, подключаемые извне или встроенные. Существуют М. п., у которых постоянный магнит помещен внутри подвижной катушки, а также М. п. с подвижным магнитом, укрепленным на оси внутри неподвижной катушки. Применяются также магнитоэлектрические логометры. М. п. с подвижным магнитом более просты, имеют меньшие габариты и массу, но меньшую точность и чувствительность, чем приборы с подвижной рамкой. Для отсчёта показаний используют стрелочный или световой указатель: луч света от осветителя направляется на зеркальце, укрепленное на подвижной части прибора, отражается от него и образует на шкале М. п. световое пятно с тёмной чертой в центре.

{tags}
2 Ноябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Магнитопровод

Магнитопровод

Магнитопровод - компонент магнитной цепи, предназначенный для локализации потока магнитной индукции. Для этого М. изготавливают из материалов с высокой магнитной проницаемостью. М. являются сердечники электромагнитов, трансформаторов, электромагнитных реле, механизмов электроизмерительных приборов, статоров и роторов электрических машин и др. Материал и конструктивное оформление определяются назначением и условиями работы устройства.

{tags}
2 Ноябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Магнитодвижущая сила

Магнитодвижущая сила

намагничивающая сила, величина, характеризующая магнитное действие электрического тока. Вводится при расчётах магнитных цепей по аналогии с электродвижущей силой в электрических цепях. М. с. F равна циркуляции вектора напряжённости магнитного поля Н по замкнутому контуру L, охватывающему электрические токи, которые создают это магнитное поле:

{tags}
2 Ноябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Магнитогидродинамический генератор

Магнитогидродинамический генератор

МГД-генератор, энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию. Название "М. г." связано с тем, что движение таких сред описывается магнитной гидродинамикой. Прямое (непосредственное) преобразование энергии составляет главную особенность М. г., отличающую его от генераторов электромашинных. Так же, как и в последних, процесс генерирования электрического тока в М. Г основан на явлении индукции электромагнитной, то есть на возникновении тока в проводнике, пересекающем силовые линии магнитного поля; отличие М. г. в том, что в нём проводником является само рабочее тело, в котором при движении поперёк магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков. Рабочими телами М. г. могут служить электролиты, жидкие металлы и ионизованные газы (плазма).В типичном для М. г. случае, когда рабочим телом служит газообразный проводник — плазма, носителями зарядов являются в основном свободные электроны и положительные ионы, отклоняющиеся в магнитном поле от траектории, по которой газ двигался бы в отсутствие поля. В сильных магнитных полях или разреженном газе заряженные частицы успевают между соударениями сместиться (в плоскости, перпендикулярной магнитному полю); такое направленное смещение заряженных частиц в М. г. приводит к тому, что появляется дополнительное электрическое поле, так называемое поле Холла (см. Холла эффект), направленное параллельно потоку газа. Термин. "М. г.", первоначально обозначавший устройства, в которых рабочим телом являлась электропроводная жидкость, в дальнейшем стал применяться также для обозначения всех устройств подобного типа, в том числе использующих в качестве рабочего тела электропроводный газ.

{tags}
2 Ноябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Магнитный усилитель

Магнитный усилитель

усилитель электрических сигналов, основанный на использовании присущей ферромагнитным материалам нелинейной зависимости магнитной индукции В от напряжённости магнитного поля Н. Управляемыми элементами в М. у. являются индуктивности катушки с ферромагнитными сердечниками, в которых действуют 2 переменных магнитных поля; одно изменяется с частотой источника питания, другое — с частотой усиливаемого сигнала. Простейший М. у. состоит из 2 замкнутых магнитопроводов, обмотки которых W1 включены последовательно и питаются от источника переменного напряжения ~ U (рис.).

{tags}
31 Октябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Магнитный пускатель

Магнитный пускатель

электрический аппарат низкого напряжения, предназначенный для дистанционного управления (пуска, остановки, изменения направления) и защиты асинхронных электродвигателей малой и средней мощности с короткозамкнутым ротором. Существуют М. п. нереверсивные и реверсивные; выпускаются также спец. М. п. для переключения обмоток многоскоростных электроприводов. М. п. состоят из контактора, кнопочного поста и теплового реле. Контактор М. п., как правило, имеет 3 главные контактные системы (для включения в трёхфазную сеть) и от 1 до 5 блок-контактов. На рисунке представлена схема нереверсивного М. п. переменного тока. При нажатии кнопки "пуск" на обмотку контактора ОР подаётся напряжение, контактор срабатывает, замыкая главные контакты ГК и блок-контакты БК; БК шунтируют контакты нажатой кнопки, что позволяет отпустить её после запуска двигателя. С нажатием кнопки "стоп" цепь питания ОР разрывается и ГК размыкаются. При резком возрастании силы потребляемого тока вследствие перегрузки или неисправности электродвигателя срабатывает тепловое реле ТР и размыкает контакты КТР, включенные в цепь питания ОР. Номинальный ток срабатывания ТР от 0,2 до 200 а. Реверсивные М. п. оборудованы двумя контакторами, сблокированными между собой механически и электрически, при этом во включенном положении может находиться лишь один из контакторов. При поочерёдном включении контакторов переключаются фазы питания и направление вращения электродвигателя изменяется. М. п. общего применения изготовляются на напряжения переменного тока 127, 220, 380 и 500 в; номинальный ток через силовые контакты от 6 до 400 а, номинальный ток блок-контактов 6—10 а. При нормальном режиме работы М. п. допускают 3—5 (иногда до 10) млн. циклов включение — выключение. М. п. могут работать с частотой 150—1200 вкл/ч, а М. п. малой мощности — с частотой до 3000 вкл/ч. Выпускаются М. п. в обыкновенном, защищенном и взрывобезопасном исполнении.

{tags}
31 Октябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Магнитное сопротивление

Магнитное сопротивление

характеристика магнитной цепи, М. с. Rm равно отношению магнитодвижущей силы F, действующей в магнитной цепи, к созданному в цепи магнитному потоку Ф. М. с. однородного участка магнитной цепи может быть вычислено по формуле Rm = l / mm0S, где l и S — длина и поперечное сечение участка магнитной цепи, m — относительная магнитная проницаемость материала цепи, m0 — магнитная постоянная. В случае неоднородной магнитной цепи (состоящей из однородных последовательных участков с различными l, S, m) её М. с. равно сумме Rm однородных участков. Расчёт М. с. по приведённой формуле является приближённым, так как формула не учитывает: "магнитные утечки" (рассеяние магнитного потока в окружающем цепь пространстве), неоднородности магнитного поля в цепи, нелинейную зависимость М. с. от поля. В переменном магнитном поле М. с. — комплексная величина, так как в этом случае и зависит от частоты электромагнитных колебаний. Единицей М. с. в Международной системе единиц служит ампер (или ампер-виток) на вебер (а/вб), в СГС системе единиц — гильберт на максвелл (гб/мкс). 1 а/вб = 4p·10-9 гб/мксм " 1,2566·10-8 гб/мкс.

{tags}
31 Октябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Вверх страницы