ОМИКРОН ОМИКРОН ОМИКРОН
Система Orphus
Релейная защита воздушных линий 110-220 кВ типа ЭПЗ-1636 [25] Расчет уставок устройств релейной защиты [24] ДИСТАНЦИОННАЯ ЗАЩИТА [18] Максимальная токовая защита [14] Проверка релейной защиты [13] Дифференциальная защита линий [12] Защита синхронных генераторов [12] Измерительные трансформаторы [10] Принципы построения измерительных и логических органов релейной защиты на полупроводниковой и интегральной базе [10] Токовая направленная защита [9] Защита электродвигателей [9] Реле [9] Защита от однофазных замыканий на землю в сети с изолированной нейтралью [8] Правила выполнения схем РЗА [8] Проверка защиты первичным током нагрузки и рабочим напряжением [8] Высокочастотные защиты [7] Защита воздушных и кабельных линий электропередачи [7] Защита трансформаторов и автотрансформаторов [7] Защита предохранителями и автоматическими выключателями [7] Защита от коротких замыканий на землю в сети с глухозаземленной нейтралью [6] Векторные диаграммы. Короткие замыкания в электрических системах [6] Действие релейной защиты при качаниях [6] Аппаратура для проверки релейной защиты [5] Защита шин [3] Особенности защиты линий и трансформаторов, подключенных к линиям без выключателей на стороне высшего напряжения [3] Оперативный ток [3] Общие сведения [3] Управление выключателями [2]

4-2. Постоянный оперативный ток

а) Источники и схемы питания

Основными источниками постоянного оперативного тока являются аккумуляторные батареи с зарядными устройствами [Л. 23—26|. Стандартными величинами номинальных напряжений постоянного оперативного тока приняты 24, 48, 110 и 220 В.

Для питания устройств релейной защиты и автоматики, управления выключателями, аварийной и предупредительной сигнализации, а также других установок, требующих питания от независимого источника постоянного тока, создается специальная распределительная сеть (рис. 4-1). Для заряда аккумуляторных батарей используются полупроводниковые или ртутные выпрямители или зарядные агрегаты, состоящие из асинхронного электродвигателя и генератора постоянного тока.

Для обеспечения надежного питания оперативным током ответственных устройств распределительная сеть делится на отдельные участки, чтобы повреждение на одном из них не нарушало работу других [Л. 23, 25].

Все потребители постоянного оперативного тока делятся по степени их ответственности на несколько категорий. Наиболее ответственными потребителями являются цепи оперативного тока релейной защиты, автоматики и управления выключателями. Эти цепи питаются от отдельных шинок управления (рис. 4-1), которые для повышения надежности делятся на несколько секций. Каждая секция шинок управления питает цепи релейной защиты, автоматики и управления определенного участка, например выключателей 110 кВ, 35 кВ и т. д. Между секциями установлены рубильники, позволяющие производить питание от соседней секции при повреждении питающей линии.

На каждой линии, отходящей от шин аккумуляторной батареи, установлены рубильники и плавкие предохранители П, исправность которых непрерывно контролируется сигнальными лампами или реле (на рис. 4-1 не показаны).

От шинок управления питание на цепи релейной защиты, автоматики и управления подается через отдельные предохранители ПУ для каждого выключателя. Контроль исправности этих предохранителей осуществляется непосредственно в схемах управления выключателей.

Цепи сигнализации также часто питаются от отдельных шинок сигнализации. Однако ввиду меньшей ответственности они делятся па меньшее количество секции, например две. В тех случаях, когда отдельные шинки сигнализации не предусматриваются, питание цепей сигнализации производится от цепей управления через отдельные предохранители.

В цепях управления ток проходит кратковременно во время включения или отключения выключателей и составляет примерно 5—10 А. Поэтому проводка цепей управления выполняется кабелем и проводом сечением 1,5—2,5 мм2.

Номинальный ток плавких вставок предохранителей выбирается по формуле (2-12) и проверяется условие, что ток при коротком замыкании в наиболее удаленной точке в 5—10 раз больше номинального тока плавкой вставки. При определении величины тока, который может проходить через предохранитель, необходимо учитывать все реле защиты и автоматики, сигнальные лампы, отключающие электромагниты, и контакторы включения, ток которых может одновременно проходить через предохранитель.

Ток короткого замыкания определяется по формуле

где е — э. д. с. одного элемента батареи, В; rэ — внутреннее сопротивление одного элемента, Ом; n — число элементов в цепи разряда, шт.; rЦ — сопротивление цепи от шин батареи до места короткого замыкания в оба конца, Ом.

Средние значения е и rэ для одного элемента аккумуляторов типов С-1 и СК-1 составляют: для разряженного состояния ер =1,8 В, rЭ.Р. = 0,006 Ом, для заряженного состояния еЗ= 2,1 В, rЭ.З. = 0,0046 Ом.

Сопротивления элементов аккумуляторов других типов определяются делением указанных значений на номер батареи.

Сопротивление цепи определяется по известной формуле

где l — расстояние по трассе кабеля от шин батареи до места короткого замыкания, м; — удельная проводимость, равная 57 для меди и 34 для алюминия; S — сечение жил кабеля, мм2.

Отдельные шинки и цепи выполняются для питания обмоток включающих электромагнитов масляных выключателей. Ток в этих цепях проходит кратковременно, но достигает больших величин (до 400 А). Поэтому сечение кабелей выбирается таким, чтобы падение напряжения в них не превосходило допустимой величины и напряжение на обмотках включающих электромагнитов не снижалось ниже 70% номинального. Предохранители ПВ в этих цепях предназначены для отделения поврежденного участка от батареи и для защиты обмоток включающих электромагнитов от длительного прохождения тока, на которое они не рассчитаны. Номинальный ток плавкой вставки определяется по формуле (2-12).

Остальные потребители постоянного тока: аварийное освещение, " мелкие электродвигатели и т. п. — также питаются от отдельных шинок и самостоятельной сети.

б) Контроль изоляции сети постоянного тока

Нарушение изоляции относительно земли сети постоянного тока может привести к образованию обходных цепей и ложным отключениям оборудования (см. гл. 14). Поэтому все установки постоянного тока оборудуются устройствами непрерывного контроля состояния изоляции сети постоянного тока относительно земли [Л. 25, 27].

Схема простейшего контроля, приведенная на рис. 4-2, состоит из двух вольтметров, включенных между каждым полюсом и землей.

В нормальных условиях, когда сопротивления изоляции каждого полюса относительно земли одинаковы, т. е. напряжение каждого полюса относительно земли равно половине напряжения между полюсами, т. е.

Если один из полюсов, например плюс, замкнется на землю, т. е. то соответственно напряжение также станет равным нулю, а напряжение возрастет до полного напряжения между полюсами, т. е.

Следовательно, при понижении сопротивления изоляции на одном из полюсов напряжение этого полюса относительно земли, нормально равное 0,5U, понижается, а напряжение другого полюса относительно земли увеличивается на ту же величину.

Для обеспечения достаточной чувствительности схемы сопротивление вольтметров должно быть соизмеримо с сопротивлением изоляции сети постоянного тока относительно земли. Удовлетворительные результаты получаются при сопротивлении вольтметров 50—100 тыс. Ом.

При помощи кнопок и вольтметров можно определить величину сопротивления изоляции сети относительно земли. Для этого поочередно размыкаются кнопки и записываются показания вольтметров . По полученным значениям напряжений и зная сопротивление вольтметров rB, определяют сопротивление изоляции сети относительно земли по формулам:

В эксплуатации используются различные устройства контроля изоляции сети постоянного тока относительно земли как периодического, так и непрерывного действия. Схема одного из устройств непрерывного автоматического контроля приведена на рис. 4-3. Устройство состоит из двух равных по величине сопротивлений r1 и r2, двустороннего магнитоэлектрического микроамперметра и поляризованного реле РП. Из рис. 4-3, б видно, что сопротивления r1 и r2 образуют с сопротивлениями схему мостика, и диагональ которого между точками a и б включены прибор и реле (на рис. 4-3, б для упрощения показан только прибор). Если сопротивления изоляции полюсов относительно земли одинаковы, т. е. то напряжение между точками a и б мостика равно нулю и ток через прибор не проходит.

При понижении сопротивления изоляции на минусе, т. е. при уменьшении потенциал точки б станет ниже потенциала точки а и через прибор и реле пойдет ток в направлении от точки а к точке б, что вызовет соответствующее отклонение стрелки прибора и срабатывание реле. При понижении сопротивления изоляции на плюсе ток будет проходить в противоположном направлении и, следовательно, отклонение стрелки прибоа также будет противоположным.

Симметричное понижение сопротивления изоляции на обоих полюсах можно обнаружить по прибору при поочередном нажатии кнопок . При этом прибор, отградуированный непосредственно в килоомах, укажет величину сопротивления изоляции полюсов относительно земли.

в) Оценка постоянного оперативного тока

Аккумуляторные батареи являются наиболее надежными источниками оперативного тока. Поэтому они широко применяются на электростанциях и подстанциях для питания оперативных цепей релейной защиты, автоматики и управления выключателями. Однако аккумуляторные батареи имеют высокую стоимость, требуют специальное помещение, зарядное устройство; обслуживать их должен квалифицирован-ныи персонал. Кроме того, выполнение распределительной сети постоянного тока требует затрат большого количества контрольного кабеля. Поэтому наряду с применением аккумуляторных батарей все более широкое распространение получает питание оперативных цепей от источников переменного тока.

6 Июнь, 2009              32382              ]]>Печать]]>
5 / 16 ( Средне )

Добавить комментарий

Ваше имя

Текст

Контрольный вопрос

Dвa pлюs тpi ? (цифрой)

Вверх страницы