ОМИКРОН ОМИКРОН ОМИКРОН
Система Orphus
Релейная защита воздушных линий 110-220 кВ типа ЭПЗ-1636 [25] Расчет уставок устройств релейной защиты [24] ДИСТАНЦИОННАЯ ЗАЩИТА [18] Максимальная токовая защита [14] Проверка релейной защиты [13] Дифференциальная защита линий [12] Защита синхронных генераторов [12] Измерительные трансформаторы [10] Принципы построения измерительных и логических органов релейной защиты на полупроводниковой и интегральной базе [10] Токовая направленная защита [9] Защита электродвигателей [9] Реле [9] Защита от однофазных замыканий на землю в сети с изолированной нейтралью [8] Правила выполнения схем РЗА [8] Проверка защиты первичным током нагрузки и рабочим напряжением [8] Высокочастотные защиты [7] Защита воздушных и кабельных линий электропередачи [7] Защита трансформаторов и автотрансформаторов [7] Защита предохранителями и автоматическими выключателями [7] Защита от коротких замыканий на землю в сети с глухозаземленной нейтралью [6] Векторные диаграммы. Короткие замыкания в электрических системах [6] Действие релейной защиты при качаниях [6] Аппаратура для проверки релейной защиты [5] Защита шин [3] Особенности защиты линий и трансформаторов, подключенных к линиям без выключателей на стороне высшего напряжения [3] Оперативный ток [3] Общие сведения [3] Управление выключателями [2]

16-6. Проверка токовых цепей реле направленного действия

В отличие от рассмотренного выше случая проверки токовых цепей дифференциальных защит, когда нас интересовало только взаимное расположение двух или нескольких токов, при проверке токовых цепей реле направленного действия (реле направления мощности, направленного реле сопротивления) необходимо знать взаимное расположение токов и напряжений, подводимых к обмоткам проверяемого реле.

Это условие определяет следующие особенности снятия векторных диаграмм при проверке правильности включения реле направленного действия:

диаграмму токов необходимо снимать на те же напряжения, которые подведены к проверяемой защите;

перед снятием диаграммы необходимо убедиться, что напряжения симметричны и имеют определенное чередование фаз (ABC);

необходимо знать направление мощности в первичной цепи, где установлено проверяемое реле.

Направление мощности от шин в линию принято считать положительным, а с линии на шины отрицательным (см. гл. 1). Положение векторов токов при разных направлениях активной и реактивной мощности показано на рис. 16-12.

На рис. 16-13 построена диаграмма, на которой показаны положения вектора тока фазы А при разных знаках мощности. Диаграмма разделена осями координат (Р — активная мощность, с которой совпадает вектор фазного напряжения, и Q — реактивная мощность) на четыре участка — так называемые квадранты, имеющие нумерацию I—IV. Например, если активная и реактивная мощности направлены от шин подстанции в линию, т. е. имеют положительный знак, говорят, что вектор тока расположен в I квадранте.

Направление мощности в первичной цепи, знание которого необходимо, чтобы построить вектор первичного тока, определяется на основании показаний щитовых приборов. Если точное направление мощности в первичной сети не может быть определено при существующей схеме коммутации, необходимо создать режим одностороннего питания. При этом активная мощность, очевидно, всегда будет направлена от элекростанции к нагрузке. То же самое можно сказать о направлении реактивной мощности, если только на приемной подстанции нет синхронных электродвигателей, компенсаторов или других источников реактивной мощности. В случае наличия таких источников реактивная мощность может быть направлена от шин приемной подстанции. Следует также иметь в виду, что протяженные воздушные линии напряжением 220—500 кВ и кабельные линии, обладающие значительной емкостью на землю, сами являются источниками реактивной мощности, направленной к шинам подстанции. Это обстоятельство следует учитывать при построении и анализе векторных диаграмм.

Проверка правильности подключения токовых цепей реле направленного действия производится путем сопоставлений векторов вторичных токов, определенных при снятии векторной диаграммы, с векторами первичных токов, положение которых определяется по известному направлению мощности в первичной сети (фазометр включается, как показано на рис. 16-3, а и б).

Если вектор вторичного тока совпадает с вектором первичного тока, как показано на рис. 16-14, а, значит, трансформаторы тока соединены в соответствии с рис. 16-14,б, или, как говорят, с «прямой полярностью». Обратная картина имеет место, если трансформаторы тока соединены с «обратной полярностью», как показано на рис. 16-14, г. Соответствующая векторная диаграмма токов изображена на рис. 16-14, в.

Векторные диаграммы, приведенные на рис. 16-14, соответствуют схеме соединения трансформаторов напряжения Y / Y-12, при которой векторы первичных и вторичных напряжений совпадают по фазе.

Если при проверке выяснится, что токовые цепи собраны неправильно, то следует выявить ошибку и исправить ее.

После окончания замеров токов в фазах и снятия векторной диаграммы необходимо замерить ток в нулевом проводе защиты.

14 Июнь, 2009              6196              ]]>Печать]]>
2 / 9 ( Отлично )

Добавить комментарий

Ваше имя

Текст

Контрольный вопрос

Дva plus trи ? (цифрой)

Вверх страницы