Система Orphus
Релейная защита воздушных линий 110-220 кВ типа ЭПЗ-1636 [25] Расчет уставок устройств релейной защиты [20] ДИСТАНЦИОННАЯ ЗАЩИТА [18] Максимальная токовая защита [14] Проверка релейной защиты [13] Дифференциальная защита линий [12] Защита синхронных генераторов [12] Измерительные трансформаторы [10] Принципы построения измерительных и логических органов релейной защиты на полупроводниковой и интегральной базе [10] Токовая направленная защита [9] Защита электродвигателей [9] Реле [9] Защита от однофазных замыканий на землю в сети с изолированной нейтралью [8] Правила выполнения схем РЗА [8] Проверка защиты первичным током нагрузки и рабочим напряжением [8] Высокочастотные защиты [7] Защита воздушных и кабельных линий электропередачи [7] Защита трансформаторов и автотрансформаторов [7] Защита предохранителями и автоматическими выключателями [7] Защита от коротких замыканий на землю в сети с глухозаземленной нейтралью [6] Векторные диаграммы. Короткие замыкания в электрических системах [6] Действие релейной защиты при качаниях [6] Аппаратура для проверки релейной защиты [5] Защита шин [3] Особенности защиты линий и трансформаторов, подключенных к линиям без выключателей на стороне высшего напряжения [3] Оперативный ток [3] Общие сведения [3] Управление выключателями [2]

1-2. Векторные диаграммы

а) Понятие о векторах

На рис. 1-4 приведена кривая изменения переменного тока во времени. Ток сначала растет от нуля (при = 0°) до максимального положительного значения + IM (при = 90°), затем убывает, переходит через нуль (при = 180°), достигает максимального отрицательного значения — IM (при = 270°) и, наконец, возвращается к нулю (при = 360°). После этого весь цикл изменения тока повторяется.

Кривая изменения переменного тока во времени, построенная на рис. 1-4, называется синусоидой. Время Т, в течение которого происходит полный цикл изменения тока, соответствующий изменению угла до 360°, называется периодом переменного тока. Число периодов за 1 с называется частотой переменного тока. В промышленных установках и в быту в СССР и в других странах Европы используется главным образом переменный ток частотой 50 Гц. Этот ток 50 раз в секунду принимает положительное и отри цательное направление.

Изменение переменного тока во времени можно записать в следующем виде:

где i — мгновенное значение тока, т. е. значение тока в каждый момент времени; Iм — максимальное значение тока; — угловая частота переменного тока, f= 50 Гц, = 314; — начальный угол, соответствующий моменту времени, с которого начинается отсчет времени (при t = 0).

Для частного случая, показанного на рис. 1-4,

Анализируя действие устройств релейной защиты и автоматики, необходимо сопоставлять токи и напряжения, складывать или вычитать их, определять углы между ними и производить другие операции. Пользоваться при этом кривыми, подобными приведенной на рис. 1-4, неудобно, поскольку построение синусоид тока и напряжения занимает много времени и не дает простого и наглядного результата. Поэтому для упрощения принято изображать токи и напряжения в виде отрезков прямых линий, имеющих определенную длину и направление, — так называемых векторов (ОА на рис. 1-4). Один конец вектора закреплен в точке О — начало координат, а второй вращается против часовой стрелки.

Мгновенное значение тока или напряжения в каждый момент времени определяется проекцией на вертикальную ось вектора, длина которого равна максимальному значению электрической величины тока или напряжения. Эта проекция будет становиться то положительной, то отрицательной, принимая максимальные значения при вертикальном расположении вектора.

За время Т, равное периоду переменного тока, вектор совершит полный оборот по окружности (360°), занимая последовательно положения и т. д. При частоте переменного тока 50 Гц вектор будет совершать 50 об/с.

Таким образом, вектор тока или напряжения — это отрезок прямой, равный по величине максимальному значению тока или напряжения, вращающийся относительно точки О против движения часовой стрелки со скоростью, определяемой частотой переменного тока. Зная положение вектора в каждый момент времени, можно определить мгновенное значение тока или напряжения в данный момент. Так, для положения вектора тока ОА, показанного на рис. 1-5, его мгновенное значение определяется проекцией на вертикальную ось, т. е.

На основании рис. 1-5 можно также сказать, что ток в данный момент времени имеет положительную величину. Однако это еще не дает полного представления о протекании процесса в цепи переменного тока, так как неизвестно, что значит положительный или отрицательный ток, положительное или отрицательное напряжение.

Для того чтобы векторные диаграммы токов и напряжений давали полную картину, их нужно увязать с фактическим протеканием процесса в цепи переменного тока, т. е. необходимо предварительно принять условные положительные направления токов и напряжений в рассматриваемой схеме.

Без выполнения этого условия, если не заданы положительные направления токов и напряжений, любая векторная диаграмма не имеет никакого смысла.

Рассмотрим простую однофазную цепь переменного тока, приведенную на рис. 1-6, а. От однофазного генератора энергия передается в активное сопротивление нагрузки R. Зададимся положительными направлениями токов и напряжений в рассматриваемой цепи.

За условное положительное направление напряжения и э д. с. примем направление, когда потенциал вывода генератора или нагрузки, связанного с линией, выше потенциала вывода, соединенного с землей. В соответствии с правилами, принятыми в электротехнике, положительное направление для э. д. с. обозначено стрелкой, направленной в сторону более высокого потенциала (от земли к линейному выводу), а для напряжения — стрелкой, направленной в сторону более низкого потенциала (от линейного вывода к земле).

Переменный ток будем считать положительным, когда во внешней цепи он проходит от шин генератора к нагрузке (обозначено стрелкой).

Построим векторы э. д. с. и тока, характеризующие работу рассматриваемой цепи (рис. 1-6, б). Вектор э. д. с. произвольно обозначим вертикальной линией со стрелкой, направленной вверх. Для построения вектора тока запишем для цепи уравнение согласно второму закону Кирхгофа:

Поскольку знаки векторов тока и э. д. с. в выражении (1-7) совпадают, вектор тока будет совпадать с вектором э. д. с. и на рис. 1-6, б.

Здесь и в дальнейшем при построении векторов будем откладывать их по величине равными эффективному значению тока и напряжения, что удобно для выполнения различных математических операций с векторами. Как известно, эффективные значения тока и напряжения в раз меньше соответствующих максимальных (амплитудных) значений.

При заданных положительных направлениях тока и напряжения однозначно определяется и знак мощности. Положительной в рассматриваемом случае будет считаться мощность, направленная от шин генератора в линию:

так как векторы тока и э. д. с. на рис. 1-6, б совпадают.

Аналогичные соображения могут быть высказаны и для трехфазной цепи переменного тока, показанной па рис. 1-7,а.

В этом случае во всех фазах приняты одинаковые положительные направления, чему соответствует симметричная диаграмма токов и напряжений, приведенная на рис. 1-7, б. Отметим, что симметричной называется такая трехфазная система векторов, когда все три вектора равны но величине и сдвинуты относительно друг друга на угол 120°.

Вообще говоря, совсем не обязательно принимать одинаковые положительные направления во всех фазах. Однако принимать разные положительные направления в разных фазах неудобно, так как пришлось бы изображать несимметричную систему векторов при работе электрической цепи в нормальном симметричном режиме, когда все три фазы находятся в одинаковых условиях.

б) Операции с векторами

Когда мы рассматриваем только одну кривую тока или напряжения, начальное значение угла, с которого начинается отсчет или, иначе говоря, положение вектора на диаграмме, соответствующее начальному моменту времени, может быть принято произвольным. Если же одновременно рассматриваются два или несколько токов и напряжений, то, задавшись начальным положением на диаграмме одного из векторов, мы тем самым уже определяем положение всех других векторов.

Все три вектора фазных напряжений показанные на рис. 1-7, б, вращаются против часовой стрелки с одинаковой скоростью, определяемой частотой переменного тока. При этом они пересекают вертикальную ось, совпадающую с направлением вектора на рис. 1-7,б, поочередно с определенной последовательностью, а именно которая называется чередованием фаз напряжения (или тока).

Для того чтобы определить взаимное расположение двух векторов, обычно говорят, что один из них опережает или отстает от другого. При этом опережающим считается вектор, который при вращении против часовой стрелки раньше пересечет вертикальную ось. Так, например, можно сказать, что вектор напряжения на рис. 1-7, б опережает на угол 120°, или, с другой стороны, вектор отстает от вектора на угол 120°. Как видно из рис. 1-7, выражение «вектор отстает на угол 120°» равноценно выражению «вектор опережает на угол 240°».

При анализе разных электрических схем возникает необходимость складывать или вычитать векторы тока и напряжения. Сложение векторов производится геометрическим суммированием по правилу параллелограмма, как показано на рис. 1-8, а, на котором построена сумма токов

Так как вычитание — действие обратное сложению, очевидно, что для определения разности токов (например, достаточно к току прибавить вектор, обратный

Вместе с тем на рис. 1-8, а показано, что вектор разности токов можно построить проще, соединив линией концы векторов При этом стрелка вектора разности токов направлена в сторону первого вектора, т. е.

Совершенно аналогично строится векторная диаграмма междуфазных напряжений, например (рис. 1-8, б).

Очевидно, что положение вектора на плоскости определяется его проекциями на две любые оси. Так, например, для того чтобы определить положение вектора ОА (рис. 1-9), достаточно знать его проекции на взаимно перпендикулярные оси

Отложим на осях координат проекции вектора и и восстановим из точек перпендикуляры к осям. Точка пересечения этих перпендикуляров и есть точка А — один конец вектора, вторым концом которого является точка О — начало координат.

в) Назначение векторных диаграмм

Работникам, занимающимся проектированием и эксплуатацией релейной защиты, весьма часто приходится использовать в своей работе так называемые векторные диаграммы — векторы токов и напряжений, построенные на плоскости в определенном сочетании, соответствующем электрическим процессам, происходящим в рассматриваемой схеме.

Векторные диаграммы токов и напряжений строятся при расчете коротких замыканий, при анализе токораспре-деления в нормальном режиме.

Анализ векторных диаграмм токов и напряжений является одним из основных, а в ряде случаев единственным способом проверки правильности соединения цепей тока и напряжения и включения реле в схемах дифференциальных и направленных защит.

По сути дела, построение векторной диаграммы целесообразно во всех случаях, когда к рассматриваемому реле подаются две или больше электрических величин: разность токов в максимальной токовой или дифференциальной защите, ток и напряжение в реле направления мощности или в направленном реле сопротивления. Векторная диаграмма позволяет сделать заключение о том, как рассматриваемая защита будет работать при коротком замыкании, т. е. оценить правильность ее включения. Взаимное расположение векторов токов и напряжений на диаграмме определяется характеристикой рассматриваемой цепи, а также условно принятыми положительными направлениями токов и напряжений.

Для примера рассмотрим две векторные диаграммы.

На рис. 1-10, а показана однофазная цепь переменного тока, состоящая из генератора и последовательно соединенных емкостного активного и индуктивного сопротивлений (примем, что индуктивное сопротивление больше емкостного xL > xC). Положительные направления токов и напряжений, так же как и в случаях, рассмотренных выше, обозначены на рис. 1-10, а стрелками. Построение векторной диаграммы начнем с вектора э. д. с, который расположим на рис. 1-10, б вертикально. Величина тока, проходящего в рассматриваемой цепи, определится из следующего выражения:

Поскольку в рассматриваемой цепи имеются активные и реактивные сопротивления, причем xL > xC, вектор тока отстает от вектора напряжения на угол :

Напряжение в точке n на рис. 1-10, а определится согласно следующему выражению:

На рис. 1-10, б построен вектор отстающий от вектора на угол 90°. Напряжение в точке n определяется разностью векторов . Напряжение в точке m определится аналогично:

г) Векторные диаграммы при наличии трансформации

При наличии в электрической цепи трансформаторов необходимо ввести дополнительные условия, для того чтобы сопоставлять векторные диаграммы токов и напряжений на разных сторонах трансформатора. Положительные направления токов при этом следует задавать с учетом полярности обмоток трансформатора.

В зависимости от направления намотки обмоток трансформатора взаимное направление токов в них меняется. Для того чтобы определять направление токов в обмотках силового трансформатора и сопоставлять их между собой, обмоткам трансформатора дают условные обозначения «начало» и «конец».

Нарисуем схему, приведенную на рис. 1-6, только между источником э. д. с. и нагрузкой включим трансформатор (рис. 1-12, а). Обозначим начала обмоток силового трансформатора буквами А и а, концы — X и х. При этом следует иметь в виду, что «начало» одной из обмоток принимается произвольно, а второй — определяется на основании условных положительных направлений токов, заданных для обеих обмоток трансформатора.На рис. 1-12, а указаны положительные направления токов в обмотках силовых трансформаторов. В первичной обмотке положительным считается направление тока от «начала» к «концу», а во вторичной — от «конца» к «началу».

В результате при таких положительных направлениях направление тока в сопротивлении нагрузки остается таким же, что и до включения трансформатора (см. рис. 1-6 и 1-12).

При этом поскольку магнитные потоки, создаваемые в магнитопроводе обоими токами, направлены встречно

(рис. 1-13), для идеального трансформатора, пренебрегая током намагничивания, можно записать следующее равенство:

где — магнитные потоки в магнитопроводс трансформатора, а — создающие эти потоки намагничивающие силы (н. с).

Из последнего уравнения

Согласно равенству (1-11) векторы имеют одинаковые знаки и, следовательно, будут совпадать по направлению (рис. 1-12, б).

Принятые положительные направления токов в обмотках трансформатора удобны тем, что векторы первичного и

вторичного токов на векторной диаграмме совпадают по направлению (рис. 1-12, б). Для напряжений также удобно принять такие положительные направления, чтобы векторы вторичного и первичного напряжений совпадали, как показано на рис. 1-12.

В рассматриваемом случае имеет место соединение трансформатора по схеме 1/1-12. Соответственно для трехфазного трансформатора схема соединений и векторная диаграмма токов и напряжений показаны на рис. 1-14.

На рис. 1-15, б построены векторные диаграммы напряжений, соответствующие схеме соединения трансформатора

На стороне высшего напряжения, где обмотки соединены в звезду, междуфазные напряжения в раз превышают фазные напряжения. На стороне же низшего напряжения, где обмотки соединены в треугольник, междуфазные и фазные напряжения равны. Междуфазные напряжения стороны низшего напряжения отстают на 30° от аналогичных междуфазных напряжений стороны высшего напряжения, что и соответствует схеме соединений

Для рассматриваемой схемы соединений обмоток трансформатора можно построить и векторные диаграммы токов, проходящих с обеих его сторон. При этом следует иметь в виду, что на основании принятых нами условий определяются только положительные направления токов в обмотках трансформатора. Положительные же направления токов в линейных проводах, соединяющих выводы обмоток низшего напряжения трансформатора с шинами, могут быть приняты произвольно независимо от положительных направлений токов, проходящих в треугольнике.

Так, например, если принять положительные направления токов в фазах на стороне низшего напряжения от выводов, соединенных в треугольник, к шинам (рис. 1-15, а), можно записать следующие равенства:

Соответствующая векторная диаграмма токов показана на рис. 1-15, в.

Аналогично можно построить векторную диаграмму токов и для случая, когда положительные направления токов приняты от шин к выводам треугольника (рис. 1-16, а). Этому случаю соответствуют следующие равенства:

и векторные диаграммы, приведенные на рис. 1-16, б. Сравнивая диаграммы токов, приведенные на рис. 1-15, в и 1-16, б, можно сделать вывод, что векторы фазных токов, проходящих в проводах, соединяющих выводы обмоток низ-

шего напряжения трансформатора и шины, находятся в про-тивофазе. Конечно, как те, так и другие диаграммы верны.

Таким образом, при наличии в схеме обмоток, соединенных в треугольник, необходимо задаваться положительными направлениями токов как в самих обмотках, так и в линейных проводах, соединяющих треугольник с шинами.

В рассматриваемом случае при определении группы соединений силового трансформатора удобно за положительные принимать направления от выводов низшего напряжения к шинам, так как при этом векторные диаграммы токов совпадают с принятым обозначением групп соединения силовых трансформаторов (сравните рис. 1-15, б и в). Аналогично могут быть построены векторные диаграммы токов и для других групп соединения силовых трансформаторов. Сформулированные выше правила построения векторных диаграмм токов и напряжений в схемах с трансформаторами действительны и для измерительных трансформаторов тока и напряжения.

6 Июнь, 2009              65203              ]]>Печать]]>
11 / 55 ( Отлично )

Последние комментарии : 9

Саня             Добавлен: 22 Март, 2010 20:51       Ответить
Самая популярная тема среди релейщиков Подмигиваю . Без векторов никуды.
князь             Добавлен: 4 Июнь, 2010 11:32       Ответить
Не понял пипец
Антоша             Добавлен: 24 Ноябрь, 2010 15:42       Ответить
Доволен почитал,что-то понял,но мне нужно другое.
Принк             Добавлен: 18 Декабрь, 2010 10:23       Ответить
Мозг на грани взрыва... Ух ты
лох             Добавлен: 3 Февраль, 2011 17:52       Ответить
Грущу Грущу Грущу Доволен Улыбка до ушей Не понял ИМХО
Andrey4eg             Добавлен: 5 Февраль, 2011 07:43       Ответить
Как это можно понимать и решать, ужс Не понял
петр             Добавлен: 7 Июль, 2011 18:08       Ответить
прикольно Не понял Доволен Бе-бе-бе Улыбка до ушей
Роман             Добавлен: 23 Июль, 2012 16:02       Ответить

Вектора - основа всех защит.wink

Роман             Добавлен: 22 Сентябрь, 2012 17:50       Ответить

Да, молодому релейщику или киповцу не позавидуешь на ранних стадиях профессиональной деятельности)))

Добавить комментарий

Ваше имя

Текст

Контрольный вопрос

Дva plus trи ? (цифрой)

>

Вверх страницы