ОМИКРОН ОМИКРОН ОМИКРОН
Система Orphus

Полупроводниковый диод

Полупроводниковый диод

Полупроводниковый диод - двухэлектродный электронный прибор на основе полупроводникового (ПП) кристалла. Понятие "П. д." объединяет различные приборы с разными принципами действия, имеющие разнообразное назначение. Система классификации П. д. соответствует общей системе классификации полупроводниковых приборов. В наиболее распространённом классе электропреобразовательных П. д. различают: выпрямительные диоды, импульсные диоды, стабилитроны, диоды СВЧ (в т. ч. видеодетекторы, смесительные, параметрические, усилительные и генераторные, умножительные, переключательные). Среди оптоэлектронных П. д. выделяют фотодиоды, светоизлучающие диоды и ПП квантовые генераторы.

Наиболее многочисленны П. д., действие которых основано на использовании свойств электронно-дырочного перехода (р—n-перехода). Если к р—n-переходу диода (рис. 1) приложить напряжение в прямом направлении (т. н. прямое смещение), т. е. подать на его р-область положительный потенциал, то потенциальный барьер, соответствующий переходу, понижается и начинается интенсивная инжекция дырок из р-области в n-область и электронов из n-области в р-область — течёт большой прямой ток (рис. 2). Если приложить напряжение в обратном направлении (обратное смещение), то потенциальный барьер повышается и через р—n-переход протекает лишь очень малый ток неосновных носителей заряда (обратный ток). На рис. 3 приведена эквивалентная схема такого П. д.

Вольтамперная характеристика полупроводникового диода с р-n — переходом

 

 

Полупроводниковый диод с р-n — переходом (структурная схема)

 

 

Вольтамперные характеристики туннельного и обращенного диодов

На резкой несимметричности вольтамперной характеристики (ВАХ) основана работа выпрямительных (силовых) диодов. Для выпрямительных устройств и др. сильноточных электрических цепей выпускаются выпрямительные П. д., имеющие допустимый выпрямленный ток Iв до 300 а и максимальное допустимое обратное напряжение U*обр от 20—30 в до 1—2 кв. П. д. аналогичного применения для слаботочных цепей имеют Iв < 0,1 а и называются универсальными. При напряжениях, превышающих U*oбp, ток резко возрастает, и возникает необратимый (тепловой) пробой р—n-перехода, приводящий к выходу П. д. из строя. С целью повышения U*обр до нескольких десятков кв используют выпрямительные столбы, в которых несколько одинаковых выпрямительных П. д. соединены последовательно и смонтированы в общем пластмассовом корпусе. Инерционность выпрямительных диодов, обусловленная тем, что время жизни инжектированных дырок (см. Полупроводники) составляет > 10-5—10-4 сек, ограничивает частотный предел их применения (обычно областью частот 50—2000 гц).

Использование специальных технологических приёмов (главным образом легирование германия и кремния золотом) позволило снизить время переключения до 10-7—10-10 сек и создать быстродействующие импульсные П. д., используемые, наряду с диодными матрицами, главным образом в слаботочных сигнальных цепях ЭВМ.

При невысоких пробивных напряжениях обычно развивается не тепловой, а обратимый лавинный пробой р—n-перехода — резкое нарастание тока при почти неизменном напряжении, называется напряжением стабилизации Ucт. На использовании такого пробоя основана работа полупроводниковых стабилитронов. Стабилитроны общего назначения с Ucт от 3—5 в до 100—150 в применяют главным образом в стабилизаторах и ограничителях постоянного и импульсного напряжения; прецизионные стабилитроны, у которых встраиванием компенсирующих элементов достигается исключительно высокая температурная стабильность Ucт (до 1?10-5— 5?10-6 К-1), — в качестве источников эталонного и опорного напряжений.

В предпробойной области обратный ток диода подвержен очень значительным флуктуациям; это свойство р—n-перехода используют для создания генераторов шума. Инерционность развития лавинного пробоя в р—n-переходе (характеризующаяся временем 10-9—10-10 сек)обусловливает сдвиг фаз между током и напряжением в диоде, вызывая (при соответствующей схеме включения его в электрическую цепь) генерирование СВЧ колебаний. Это свойство успешно используют в лавинно-пролётных полупроводниковых диодах, позволяющих осуществлять генераторы с частотами до 150 Ггц.

Для детектирования и преобразования электрических сигналов в области СВЧ используют смесительные П. д. и видеодетекторы, в большинстве которых р—n-переход образуется под точечным контактом. Это обеспечивает малое значение ёмкости Св (рис. 3), а специфическое, как и у всех СВЧ диодов, конструктивное оформление обеспечивает малые значения паразитных индуктивности Lk и ёмкости Ск и возможность монтажа диода в волноводных системах.

При подаче на р—n-переход обратного смещения, не превышающего U*обр, он ведёт себя как высокодобротный конденсатор, у которого ёмкость Св зависит от величины приложенного напряжения. Это свойство используют в варикапах, применяемых преимущественно для электронной перестройки резонансной частоты колебательных контуров, в параметрических полупроводниковых диодах, служащих для усиления СВЧ колебаний, в варакторах и умножительных диодах, служащих для умножения частоты колебаний в диапазоне СВЧ. В этих П. д. стремятся уменьшить величину сопротивления rб (основной источник активных потерь энергии) и усилить зависимость ёмкости Св от напряжения Uo6p.

У р—n-перехода на основе очень низкоомного (вырожденного) полупроводника область, обеднённая носителями заряда, оказывается очень тонкой (~ 10-2 мкм), и для неё становится существенным туннельный механизм перехода электронов и дырок через потенциальный барьер (см. Туннельный эффект). На этом свойстве основана работа туннельного диода, применяемого в сверхбыстродействующих импульсных устройствах (например, мультивибраторах, триггерах), в усилителях и генераторах колебаний СВЧ, а также обращенного диода, применяемого в качестве детектора слабых сигналов и смесителя СВЧ колебаний. Их ВАХ (рис. 4) существенно отличаются от ВАХ других П. д. как наличием участка с "отрицательной проводимостью", ярко выраженной у туннельного диода, так и высокой проводимостью при нулевом напряжении.

Полупроводниковый диода с р-n — переходом

К П. д. относят также ПП приборы с двумя выводами, имеющие неуправляемую четырёхслойную р—n—р—n-структуру и называют динисторами (см. Тиристор), а также приборы, использующие объёмный эффект доменной неустойчивости в ПП структурах без р—n-перехода — Ганна диоды. В П. д. используют и др. разновидности ПП структур: контакт металл — полупроводник (см. Шотки эффект, Шотки диод)и р—i—n-структуру, характеристики которых во многом сходны с характеристиками р—n-перехода. Свойство р—i—n-структуры изменять свои электрические характеристики под действием излучения используют, в частности, в фотодиодах и детекторах ядерных излучений, устроенных т. о., что фотоны или ядерные частицы могут поглощаться в активной области кристалла, непосредственно примыкающей к р—n-переходу, и изменять величину обратного тока последнего. Эффект излучательной рекомбинации электронов и дырок, проявляющийся в свечении некоторых р—n-переходов при протекании через них прямого тока, используется в светоизлучающих диодах. К П. д. могут быть отнесены также и полупроводниковые лазеры.

Большинство П. д. изготавливают, используя планарно-эпитаксиальную технологию (см. Планарная технология), которая позволяет одновременно получать до нескольких тысяч П. д. В качестве полупроводниковых материалов для П. д. применяют главным образом Si, а также Ge, GaAs, GaP и др., в качестве контактных материалов — Au, Al, Sn, Ni, Cu. Для защиты кристалла П. д. его обычно помещают в металло-стеклянный, металло-керамический, стеклянный или пластмассовый корпус (рис. 5).

Полупроводниковые диоды (внешний вид)

В СССР для обозначения П. д. применяют шестизначный шифр, первая буква которого характеризует используемый полупроводник, вторая — класс диода, цифры определяют порядковый номер типа, а последняя буква — его группу (например, ГД402А — германиевый универсальный диод; КС196Б — кремниевый стабилитрон).

От своих электровакуумных аналогов, например кенотрона, газоразрядного стабилитрона, индикатора газоразрядного, П. д. отличаются значительно большими надёжностью и долговечностью, меньшими габаритами, лучшими техническими характеристиками, меньшей стоимостью и поэтому вытесняют их в большинстве областей применения.

С развитием ПП электроники совершился переход к производству наряду с дискретными П. д. диодных структур в ПП монолитных интегральных схемах и функциональных устройствах, где П. д. неотделим от всей конструкции устройства.

Об исторических сведениях см. в ст. Полупроводниковая электроника.

Лит.: Полупроводниковые диоды. Параметры. Методы измерений, М., 1968; Федотов Я. А., Основы физики полупроводниковых приборов, М., 1970; Пасынков В. В., Чиркин Л. К., Шинков А. Д., Полупроводниковые приборы, М., 1973; Зи С. М., Физика полупроводниковых приборов, пер. с англ., М., 1973.

Ю. Р. Носов.

2 Ноябрь, 2008              13882              ]]>Печать]]>
3 / 11 ( Хорошо )

Добавить комментарий

Ваше имя

Текст

Контрольный вопрос

Дva plus trи ? (цифрой)

Вверх страницы