ОМИКРОН ОМИКРОН ОМИКРОН
А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
0-9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z

Ложное срабатывание

Ложное срабатывание

ЛОЖНОЕ СРАБАТЫВАНИЕ – разновидность неправильного срабатывания [1] реле при отсутствии:

- требования на срабатывание [2, 3];

- дефектов в измерительных цепях тока и напряжения [4].

{tags}
20 Январь, 2017              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Локализационная способность распределительного устройства

Локализационная способность распределительного устройства - способность конструкции при закрытых на соответствующие крепления дверях и крышках не допускать в течение заданного времени распространения аварийной дуги, возникшей в отсеке распределительного устройства (шкафу, ячейке, группе шкафов, имеющих общий отсек и электрические связи по линейным выводам) на другие отсеки и обеспечивать защиту обслуживающего персонала от воздействия электрической дуги (рис. 1).

{tags}
22 Февраль, 2015              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Люминофоры

Люминофоры

Люминофоры - (от латинского lumen — свет и греческого phoros — несущий), твёрдые и жидкие вещества, способные люминесцировать под действием различного рода возбуждений (см. Люминесценция). По типу возбуждения различают фотолюминофоры, рентгенолюминофоры, радиолюминофоры, катодолюминофоры, электролюминофоры. Некоторые Л. могут выступать в качестве Л. смешанных типов (например, ZnS·Cu является фото-, катодо- и электролюминофором). По химической природе различают органические Л. — органолюминофоры, и неорганические — фосфоры. Фосфоры, имеющие кристаллическую структуру, называются кристаллофосфорами.

{tags}
31 Октябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Люминесцентная лампа

Люминесцентная лампа

газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких %. Л. л. широко применяются для общего освещения, при этом их световая отдача и срок службы в несколько раз более, чем у ламп накаливания того же назначения. Наиболее распространённой разновидностью подобных источников является ртутная Л. л. (рис. 1). Она представляет собой стеклянную трубку с нанесённым на внутреннюю поверхность слоем люминофора. В торцы трубки введены вольфрамовые спиральные электроды; для повышения эмиссионной способности на электроды наносится оксидная суспензия, изготовляемая из карбонатов или перекисей щёлочноземельных металлов. В лампу вводят каплю ртути и некоторое количество инертного газа (Ar, Ne и др.), который способствует увеличению срока службы лампы и улучшению условий возбуждения атомов ртути. При подключении Л. л. к источнику переменного тока между электродами лампы возникает электрический ток (десятые доли а), возбуждающий свечение атомов ртути. Давление ртутных паров в Л. л. зависит от температуры стенок лампы и составляет при нормальной рабочей температуре 40 °С примерно 0,13—1,3 н/м2 (10-2—10-3 мм рт. ст.). Такое низкое давление обеспечивает интенсивное излучение разряда в ультрафиолетовой области спектра (преимущественно с длиной волны l 184,9 и 253,7 нм), которое и возбуждает свечение люминофорного слоя ламп.

{tags}
31 Октябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Лоренца — Максвелла уравнения

Лоренца — Максвелла уравнения

Лоренца уравнения, фундаментальные уравнения классической электродинамики, определяющие микроскопические электромагнитные поля, создаваемые отдельными заряженными частицами. Л. — М. у. лежат в основе электронной теории (микроскопической электродинамики), построенной Х. А. Лоренцом в конце 19 — начале 20 вв. В этой теории вещество (среда) рассматривается как совокупность электрически заряженных частиц (электронов и атомных ядер), движущихся в вакууме.

{tags}
31 Октябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Логометр

Логометр

Логометр - (от греч. logos — слово, здесь — отношение и ...метр), механизм приборов для измерения отношения сил двух электрических токов. Принцип действия Л. основан на том, что направленные встречно вращающие моменты, возникающие вследствие воздействия на подвижную часть Л. величин, входящих в измеряемое отношение, уравновешиваются при отклонении подвижной части на некоторый угол. Например, подвижную часть магнитоэлектрического Л. образуют две скрепленные под углом рамки, токи к которым подводятся через безмоментные спирали (рис.,а). Находясь в поле постоянного магнита, рамки стремятся повернуться в направлении действия большего момента, и подвижная часть отклоняется до тех пор, пока моменты не уравновесятся. Л. широко применяются в различных схемах для измерения электрических величин: ёмкости, индуктивности, сопротивления. Например, при использовании Л. в омметре (рис., б) угол a, на который отклоняется подвижная часть Л., зависит только от отношения сил токов I1 и I2,

{tags}
31 Октябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Линейные системы

Линейные системы

Линейные системы - колебательные системы, свойства которых не изменяются при изменении их состояния, т. е. параметры Л. с., характеризующие её свойства (упругость, масса и коэффициент трения механической системы; ёмкость, индуктивность и активное сопротивление электрической системы), не зависят от величин, характеризующих состояние системы (от смещений и скоростей в случае механической системы, напряжений и токов в случае электрической системы). Параметры реальных систем всегда в той или иной степени зависят от их состояния, например коэффициент упругости пружины зависит от величины деформации (отклонения от закона Гука при больших деформациях), активное сопротивление проводника зависит от его температуры, которая, в свою очередь, зависит от силы протекающего по проводнику тока и т. д. Поэтому реальные системы можно рассматривать как Л. с. только в некоторых ограниченных пределах изменений их состояния, при которых допустимо пренебречь изменениями их параметров. Для очень большого числа реальных систем эти пределы оказываются весьма широкими, поэтому большинство задач можно решать, рассматривая реальные системы как Л. с. Примерами Л. с. могут служить: маятник (при малых амплитудах колебания), электрический колебательный контур, мостовая измерительная схема, системы автоматического управления и регулирования и др. В тех случаях, когда в пределах возможных изменений состояний реальной системы уже сказываются изменения её параметров, приходится учитывать нелинейность системы (см. Нелинейные системы).

{tags}
31 Октябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Лавинно-пролётный полупроводниковый диод

Лавинно-пролётный полупроводниковый диод

полупроводниковый прибор с отрицательным сопротивлением, возникающим из-за сдвига фаз между током и напряжением на выводах прибора вследствие инерционных свойств лавинного умножения носителей заряда и конечного времени их пролёта в области р-n-перехода. Лавинное умножение в р-n-переходе вызвано ударной ионизацией атомов носителями заряда. В отличие от др. приборов этого класса (туннельных диодов, тиристоров, Ганна диодов), отрицательное сопротивление ЛПД проявляется только на СВЧ. Идея создания ЛПД впервые высказана американским физиком В. Ридом в 1958. Экспериментально генерация колебаний с помощью ЛПД впервые наблюдалась в СССР в 1959 группой сотрудников под рук. А. С. Тагера.

{tags}
31 Октябрь, 2008              {commentbig}: {count}              Прочесть статью             
{langrating}: {rating}

Вверх страницы